Journal of Organometallic Chemistry, 131 (1977) 317–320 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ORGANOPLATINUM COMPOUNDS

III *. [Me₃PtClO₄]₄, PREPARATIVE AND STRUCTURAL ASPECTS OF A NEW ORGANOPLATINUM CLUSTER COMPOUND

BORIS NERUDA, EBERHARD GLOZBACH and JÖRG LORBERTH *

Fachbereich Chemie der Philipps-Universität, Lahnberge, D-3550 Marburg/Lahn (Germany) (Received October 18th, 1976)

317

Summary

Several methods for the preparation of Me₃PtClO₄ have been investigated: anhydrous, pure Me₃PtClO₄ was obtained by treating AgClO₄ with Me₃PtI in dry benzene. The compound is sensitive to moisture and explodes on heat or shock treatment. Molecular weight determination indicates a tetrameric structure [Me₃PtClO₄]₄, and spectroscopic data are consistent with this. Preliminary X-ray investigation of a single crystal indicates a crystal symmetry $I4_1/amd$ (Schoenflies: D_{4n}^{4n}) with four [Me₃PtClO₄]₄ units in a tetragonal cell (a = b = 11.267(5); c =25.09(1)) and local symmetry D_{2d} of the [Me₃PtClO₄]₄ structure.

Results and discussion

The perchlorate anion ClO_4^- functions as a monodentate [1,2], a bidentate, or a bridging ligand [3] in many coordination compounds which exhibit quite different thermodynamic stabilities. Perchlorates of the heavy metals and of the transition series are predominantly covalent, and therefore potentially dangerous explosives.

Trimethylplatinum perchlorate has so far only been studied in solutions, which has given information on the spectroscopic characteristics associated with the solvated cation $(Me_3Pt)_{solv}^+$ and the tetrahedral ClO_4^- anion [4]. We (with Von Dahlen [5]) have attempted the synthesis of pure, anhydrous Me_3PtClO_4 through the following reactions:

 $(Me_3Pt)_2SO_4 \times 4 H_2O + 5 Ba(ClO_4)_2$

 $2 \operatorname{Me_3PtClO_4} + \operatorname{BaSO_4} + 4 \operatorname{Ba}(\operatorname{ClO_4})_2 \cdot x \operatorname{H_2O}$

* For Part II see ref. 7.

$Me_3PtOH + HClO_4 + Me_3PtClO_4 + H_2O$

(Caution! At higher concentrations of HClO₄ this procedure leads to violent explosions)

$$\begin{split} & \text{Me}_3\text{PtN}_3 + \text{AgClO}_4 \twoheadrightarrow \text{Me}_3\text{PtClO}_4 + \text{AgN}_3 \\ & \text{Me}_3\text{PtCl} + \text{AgClO}_4 \twoheadrightarrow \text{Me}_3\text{PtClO}_4 + \text{AgCl} \\ & \text{Me}_3\text{PtI} + \text{AgClO}_4 \twoheadrightarrow \text{Me}_3\text{PtClO}_4 + \text{AgI} \end{split}$$

Of these experiments only the last was successful: Me_3PtClO_4 was obtained in good yield as colourless plates. The compound is extremely sensitive to moisture, decomposes when exposed to light, and explodes on heat or shock treatment.

Trimethylplatinum perchlorate is sparingly soluble in benzene or toluene, but more soluble in ether or 1,4-dioxane. Solutions of Me₃PtClO₄ in these solvents turn yellow after a few hours (oxidation) and platinum metal is formed. For this reason CCl₄ is recommended for recrystallization and for storage of the compound in solution. Me₃PtClO₄ is relatively stable thermally; dry crystals may be handled under an inert gas without danger, but often electrostatic effects are observed. The compound decomposes gradually at 125°C (Kofler-block), but single crystals survive prolonged exposure to X-ray radiation.

Unfortunately, Me₃PtClO₄ was too unstable to give reliable and reproducible mass spectra. ¹H NMR data are in the expected range for $[Me_3PtX]_n$ derivatives:

ΤА	BLE	1	

VIERATIONAL	SPECTRA	OF Me ₃ PtClO ₄	IN VARIOUS	SOLVENTS

Assignment	IR		Raman		
	Nuiol/Host.	CCl4	CCl4	D ₂ O	Lit. [1]
		3090vs		· · · · · · · · · · · · · · · · · · ·	
	÷	3070s		3000vw	2978m(br)
		3040vs			
vas(C-H)	2960	2910m	2920w	2920w	2909s
~	2890			2880vw	2851vw
		1955m		a the second second	2823m
		1820m			
		1520w	1540-50w(br) ¹ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1480vs	• • • •	1450vw	1427m
		1390w			1329w
	1260vs	1270vw	1270vw	1290vw	1290m
		1240w		1250vw	1250s
δ(С—Н)	1225vs	1230vw	1225w	1220vw	1194w
		1		(2 × 600?)	
		1180w			
1. A. A.	1095w(br)				
	1020w(br)	1040s	1010vw	1020vw	
		975vw		930m	
р(СН ₃)		850w		830w	882w
	790s	· · · · ·	-		· · · · · · · · · · · · · · · · · · ·
	770(sh)				
		680vs			
vas,s(Pt-C3)		and the second		600vs	600vs
			565vs		요즘 이 수 있는 아들께들이 같을

 $\delta(Pt-CH_3)$: 1.74 ppm (ext. TMS); ${}^{2}J({}^{195}Pt-CH_3)$: 76 Hz. Raman spectra were obtained on CCl₄ and D₂O solutions and IR spectra on Nujol/polyoil emulsions and CCl₄ solutions. Crystalline material decomposed in the laser-beam of the Raman spectrometer. The principal infrared and Raman data are given in Table 1.

From the (crystallographic) local symmetry D_{2d} we would expect alternative vibrations in the IR and Raman spectra. However, there are already differences between the IR spectra of CCl₄ solutions and Nujol mulls. Taking into account the intensities in both the IR and Raman effect we assign $\nu_{as,s}$ (Pt-C₃) to the 680vs band in the IR and ν_s (Pt-C₃) to the 565vs band in the Raman spectrum.

Preliminary X-ray investigation of Me₃PtClO₄ reveals a tetragonal cell with the crystallographic symmetry $I4_1/amd$ (Schoenflies: D_{4h}^{19}) with four tetramer units [Me₃PtClO₄]₄ of local symmetry $\overline{42m}$ (D_{2d}). Cubic structures have been reported for [Me₃PtCl]₄ and [Me₃PtOH]₄. In [Me₃PtClO₄]₄ we observe a different packing leading to elongation of the c-axis: a = b = 11.267(5); c = 25.09(1).

Experimental

IR spectra were recorded on PE 457 and 577 grating instruments. For Raman spectra a CARY 83 model was used. NMR spectra were recorded on VARIAN T 60 and XL 100 instruments.

Elemental analyses were performed by A. Bernhardt, Analytical Laboratories, D-5250 Elbach über Engelskirchen, BRD. Anhydrous silver perchlorate was purchased from Alfa Inorganics. Me₃PtI was prepared from K₂PtCl₆ and MeLi [6].

 Me_3PtClO_4 . 2.45 g (11.8 mmol) of AgClO₄ were dissolved in 100 ml dry benzene (free of tiophene); a solution of 4.33 g (11.8 mmol) of Me₃PtI in 100 ml benzene was added, and the mixture stirred at room temperature in the dark for 4 h. Cream yellow AgI was precipitated and gradually turned grey on exposure to light. Al₂O₃ was added (W 200 neutral, activity super I, ICN Pharmaceuticals GmbH, West-Germany), and the mixture stirred for another 2 h. The benzene was removed in vacuo and the residue treated with 120 ml dry CCl₄ for 30 min at ambient temperature. After filtration (nitrogen) through a G4 sintered disc the solvent was partly evaporated until crystallization occured. Crystallization was completed over night at -22° C, yielding fine, colourless crystals, m.p. 125–130°C (dec.). Isolated yield: 1.66 g (73% theory). AgI was isolated in 96% yield.

Elemental analysis: Found: C, 10.24; H, 2.44; Cl, 10.35. C₃H₉ClO₄Pt calcd.: C, 10.61; H, 2.67; Cl, 10.44; O, 18.84; Pt, 57.44%.

Acknowledgement

Experiments were carried out using facilities of the Fachbereich Chemie, Philipps-Universität, Marburg/Lahn.

Additional support was given by Deutsche Forschungsgemeinschaft (for B.N. and E.G.) and VCI, Fonds der Chemischen Industrie e.V., whose generosity is gratefully acknowledged. We thank Prof. R. Allmann, FB Geowissenschaften, Philipps-Universität, Marburg/Lahn, for X-ray results.

- 1 B.J. Hathaway and A.E. Underhill, J. Chem. Soc., (1960) 653.
- 2 B.J. Hathaway and A.E. Underhill, J. Chem. Soc., (1960) 3709.
- 3 S.D. Ross, Spectrochim. Acta, 18 (1962) 225.
- 4 D.E. Clegg and J.R. Hall, Spectrochim. Acta, 21 (1965) 357.
- 5 K.-H. von Dahlen, Diploma Thesis, Marburg 1973.
- 6 K.-H. von Dahlen and J. Lorberth, J. Organometal. Chem., 65 (1974) 267.
- 7 B. Neruda and J. Lorberth, J. Organometal. Chem., 111 (1976) 241.